
Implementation of Medicine Sales by Using J2EE Design Patterns

Mya Myintzu Aye, Nan Si Kham
University of Computer Studies, Yangon

myintzzulay@gmail.com, nansikham@gmail.com

Abstract

 Software design patterns describe solutions to
specific software design problems. The usefulness of
design patterns is simple to write down and
catalogue common interactions between objects that
programmer have frequently found useful. This
system uses eight design patterns, in which
Intercepting Filter pattern (log in), View Helper
and Composite View patterns (helping to get rich
interface), Front Controller pattern (customer,
update, shopping cart, browse, payment) and
Dispatcher pattern (use in dispatch to another page)
are used in the Presentation tier. Transfer Object
pattern (transferring data from one tier to
another tier), Session Façade pattern (shopping
view cart, login) are used in the Business tier to
store data just in moment. Data Access Object
(DAO) pattern (reduce redundancy coding to
connect with database) is used in the Integration tier.
The whole system is based on the model-view-
controller patterns. The design objects are
implemented the classes using Java programming
language and SQL server.

Keywords: J2EE Design Patterns, Java 2 Enterprise
Edition, Medicine Sales, E-commerce.

1. Introduction

 J2EE (Java 2 Platform, Enterprise Edition) is
designed to provide server-side and client-side
support for developing distributed, multitier
applications [4]. The advantages of multitier
architecture are promoting software reusability,
easier system maintenance and more effective use of
data and networks. Most web-based enterprise
applications are divided into three logical tiers,
Presentation Tier, Business Logic Tier and
Integration Tier.
 Presentation tier encapsulates all presentation
logic required to service the clients that access the
system and which aims at presenting the business
information to the user, is implemented using
Servlets, JSPs, HTML and other pages.

 Business tier provides the business services
required by the application. The tier contains the
business data and business logic. Typically, most
business processing for the application is centralized
into this tier.
 Integration tier, which represents different kinds
of legacy systems, database servers, etc are usually
access through the JDBC API and other standard
interfaces provided by the J2EE Connector
Architecture [3].

In this paper, Section1 is the introduction of the
system, and Section2 presents related work of the
system. Section3 describes background theory. And
then, Section4 describes Patterns and their related
problem and solution. Section5 is the implementation
of Design pattern classes. And then Section 6 is
Overview of proposed system. Finally, Section7 is
conclusion of the system.

2. Related work

Java EE has been the platform of choice across
industries (banking, insurance, retail, hospitality,
travel, and telecom, to name a few) for developing
and deploying enterprise business applications. This
is because Java EE provides a standard-based
platform to build robust and highly scalable
distributed applications that support everything from
core banking operations to airline booking engines.
But endeavours have failed as well. There are several
reasons for such failures, of which the foremost is
inadequate design and architecture. However, Java
EE designers and architects have learned their
lessons from both failures and successes by drawing
up a list of useful design patterns.

Building applications using design patterns are
easy to maintain, reuse, and extend [2]. In this
system, Interfaces can be used to implement patterns
such as Intercepting Filter, Front Controller,
Dispatcher View, View Helper and Composite View
is to be used. Business logic can be used to
implemented patterns such as Session Façade and
Transfer Object are to be used. Storing data can be
used to implement patterns such as Data Access
Object, etc are to be used.

The systems concerned with online application
have been proposed and developed using J2EE

design patters techniques similar to our proposed
system in this paper. Zhiguo Guo implemented with
Design Patterns for J2EE Architecture and Patterns
in Enterprise Systems [7]. A Pattern-Based J2EE
Application Development Environment paper using
framework and J2EE design patterns was
implemented by Imed Hammouda and Kai
Koskimies [3].

3. Background Theory
 A design pattern is general reusable solution to
commonly occurring problem in software design.
The 21 Patterns are included in J2EE design patterns.
 In which, Intercepting Filter Pattern, Front
Controller Pattern, Context Object Pattern,
Application Controller Pattern, View Helper Pattern,
Composite View Pattern, Service to Worker Pattern,
Dispatcher View Pattern are included in Presentation
Tier. Business Delegate Pattern, Service Locator
Pattern, Session Façade Pattern, Application Service
Pattern, Business Object Pattern, Composite Entity
Pattern, Transfer Object Pattern, Transfer Object
Assembly Pattern, Value List Handle Pattern are
included in Business Tier. And then, Data Access
Object Pattern, Service Activator Pattern, Domain
Store Pattern, Web Service Broker Pattern are
included in Integration Tier.

4. J2EE Pattern: Problem and Solution
 For any software, applying design patterns
requires asking whether there are certain types of
problems which occurred with regular frequency,
which could be solved in the same way routinely.
 This system uses eight design patterns, in which
Intercepting Filter Pattern, Front Controller Pattern,
View Helper Pattern, Composite View Pattern and
Dispatcher View Pattern are used in the Presentation
Tier. Transfer Object Pattern and Session Façade
Pattern are used in the Business Tier. Data Access
Object (DAO) Pattern is used in the Integration Tier
[5].
 These are the problems before using the design
patterns and to overcome these problems after using
these design patterns solution.

4.1 Presentation Tier Patterns
4.1.1 Intercepting Filter

 Request and responses need sometimes to be
processed before being passed to handlers and other
clients. An example of request processing is form
validation, user authentication. The solution is to
create pluggable filter to process common logic
without requiring changes to core request processing
which improves code reusability and decouples
request handlers.

4.1.2 Front Controller

 The system requires a centralized access point for
request handling. Having control code in numerous

places is difficult to maintain and a single code
change might require changes be made in numerous
places. Use this pattern as the initial point of contact
for handling all related requests. The Front
Controller centralizes control logic that might
otherwise be duplicated, and manages the key
request handling activities [1].

4.1.3 Dispatcher View

 The system needs to handle the flow of request
and the navigation between views. In particular, the
system needs to know which view to dispatch next
based on the request. Use this pattern encapsulates
page selection. In its simplest form, the dispatcher
takes some parameters from the request and uses
them to select actions and a view [6]. Business
processing, if necessary in limited form, is managed
by the views.

4.1.4 View Helper

 View is used for content presentation, which may
require the processing of dynamic business data.
Business logic should not be placed within views.
Use this pattern, views to encapsulate view-
processing logic (e.g. JSP tags) and helpers to
encapsulate formatting business logic code. It makes
the application more modular and promotes code
reuse.

4.1.5 Composite View

 The problem is to keep multiple independent
views increases problem of maintainability and
reusability. Use composite views that are composed
of multiple atomic sub-views. Each sub-view can be
included dynamically in the whole, and the layout of
the page can be managed independently of the
content.

4.2 Business Tier Patterns
4.2.1 Session Façade

 The communication between presentation layer
and business layer in distributed business
applications often leads to tight coupling between
clients and the business tier. The interaction could
get so complex that maintain the system become
difficult. The solution to this problem is to provide a
simpler interface that reduces the number of business
objects exposed to the client over the network and
encapsulates the complexity of this interaction.

4.2.2 Transfer Object

 The client needs to transfer multiple data elements
over a tier. The solution is to use a Transfer Object to
carry multiple data across a tier with a single method
call is used to send and retrieve the needed data.

4.3 Integration Tier Pattern
4.3.1 Data Access Object (DAO)

 Many real-worlds applications need to use
persistent data at some point. For many applications,

persistent storage is implemented with different
persistent storage mechanism. Other applications
may need to access data that resides on separate
system. The solution is to use a Data Access Object
(DAO) to abstract and encapsulate all access to the
data source. The DAO manages the connection with
data source to obtain and store data [1].

5. The Design Patterns Classes which are
used in Medicine Sales Application
 In this session, we present eight design patterns
classes that are implemented in Medicine Sales
business application.

5.1 Intercepting Filter Class

Figure 1. Intercepting Filter Pattern
Implementation class

 Figure 1 shows the implementation of
Intercepting Filter Class. By implementing the
method of Filter Chain and Filter interface, we get
the AdminLoginFilter2 class to control and filter the
user request. To be complete login process, the user
request needs to have user name and password field.
So AdminLoginFilter2 class validate the request
whether to pass the parameter, if not reply the error
message to the client side then go to target (Front
Controller) to be complete login process.

5.2 Front Controller Class

Figure 2. Front Controller Pattern
Implementation Class

 Figure 2 shows the implementation of Front
Controller Class. Every request from the client side
must through the FrontController class to be

centralized system. So the FrontController class is
the main control of the every classes in server side. It
makes the system to check the log easily and to add
the new rule for security easily. FrontController class
as a Servlet to handle the request from the client to
control code that is common across multiple requests
is duplicated in numerous places, such as within
multiple views. The FrontController Class also helps
reduce the amount of programming logic embedded
directly in the views.

5.3 Dispatcher View Class

 By implementing the RequestDispatcher
interface, we get Dispatcher View Class. According
to the application, carrying the parameters through
the one server side class to another, we have to use
forward method of Dispatcher class.

5.4 View Helper Class

 To be View Helper design pattern, needs simple
java class and java Bean(POJO) as helper to support
the view(JSP). It makes to improve maintainability
and better reusable code. Views are separated from
the processing logic. In this, views (JSP) don’t
contain business and system logic. It makes to
improve maintainability and better code reuse.

5.5 Composite View Class

 Developing and maintaining dynamic views are
challenging, since there are often aspects of both the
view content and the view layout that are common
across multiple views. When content and layout are
intertwined, it is harder to maintain and extend the
views. Reuse and modularity also suffer when
common code is duplicated across views. So,each
sub view(JSP) class of the overall template can be
included dynamically in the whole, and the layout of
the page can be managed independently of the
content.

5.6 Session Façade Class

 The main role of web application development is
using Session tracking. By implementing the
HttpSession interface, we get the Session Façade
class to store the data in memory for traffic and
complexity saving. By storing the parameter to
session class, we can get the stored parameter from
everywhere of the system until removing from the
session. It hides the real implementation of the
business logic and exposes only the required
interface to the client.

5.7 Transfer Object Class

Figure 3. Transfer Object Pattern
Implementation Class

 Figure 3 shows the implementation of Transfer
Object Class.Transfer Object class to encapsulate the
business data transferred between the client and the
business components. Instead of invoking multiple
getters and setters for every field, a single method
call Transfer Object class is used to send and retrieve
the needed data.

5.8 Data Access Object (DAO) Class

Figure 4. Data Access Object Pattern
Implementation Class

 Figure 4 shows the implementation of Data
Access Object Class. DAO enables loose coupling
between the business and resource tiers. DAO
encapsulates all the data access logic to create,
retrieve, delete and update data from a persistent
store. DAO uses Transfer Object to send and receive
data.

6. Overview of Proposed System Design

Figure 5. Proposed System Design

 Figure 5 shows the overview design of proposed
sysetem. In this system, there are two parts, User and
Administrator. In User part, User can know about the
medicine information. If user wants to buy some
medicines, user will need to login. If user didn’t
login, user would need to signup. After that, fill
about the ordering information and valid credit card
number. Finally, user needs to be sign out. In
Administrator part, Admin can add new medicine
and update about the medicine. Before add or update
the medicine, admin must need to login with valid
password. After adding or updating about the
medicine, admin needs to be sign out.

6.1 J2EE Design Pattern Relationship in this
System

Figure 6.J2EE Patterns relationship in this system

 Figure 6 shows the J2EE Patterns relationship in
this system. AdminLoinFilter2 intercepts incoming
requests and outgoing responses and applies a filter.
For incoming request, Front Controller is used not
only to control the desire view but also to hold the
common processing logic that occurs within the
presentation tier and that may otherwise be
erroneously placed in a View. A Front Controller
handles requests and manages content retrieval,
security, view management and navigation, and then
delegating to a Dispatcher component to dispatch to
a View Helper. View component encapsulates the
presentation formatting. Helper component
encapsulates business logic. View may be composed
of multiple sub-components to create its template
using Composite View.
 Session Façade encapsulates the complexities of
the business object interaction. The Session façade
may also use other patterns to provide its services:
Transfer Object, Business Delegate and Service to
Worker, etc. The Transfer Object provides best
techniques and strategies to exchange data across tier
and then attempts to reduce the network overhead by
minimizing the number of network calls to get data
from the business tier.
 The Data Access Object pattern provides loose
coupling between the business and resource tiers.
The Data Access Object is intercepted from all
access for the resource tier, making the
implementation details of the resource tiers
transparent to the clients. The data in the resource
tier can reside in database systems, proprietary
systems, other external systems and services. By
using these patterns, user can build applications these
are more flexible and portable [8].

7. Conclusion
 This application was divided into three tiers
(presentation tier, business tier and integration tier)
according to the distributed responsibilities; Web and
container were required. With the development of
enterprise software, the current J2EE architecture
and patterns will be much widely applied or adapted
to build robust enterprise systems. This pattern-based
system can significantly ease the development
process of J2EE applications and reduce the
designing time. The advantages of applying design
patterns in this application will be solved the
recurring problem, reusability, improved
performance and increase maintainability, etc.

8. References
[1] Deepak Alur, John Crupi and Dan Malks “Core
J2EETM Patterns: Best Practices and Design Strategies”,
Second Edition

[2] Dhrubojyoti Kayal, “Pro Java EE Spring Patterns, Best
Practices and Design Strategies Implementing Java EE
Patterns with the Spring Framework”, Apress

[3] Imed Hammouda and Kai Koskimies, “A Pattern-
Based J2EE Application Development Environment” paper

[4] Inderjeet Singh, Beth Stearns, Mark Johnson, and the
Enterprise Team, “Designing Enterprise Applications with
the J2EE Platform, Second Edition”, Addison-Wesley

[5] “J2EE Patterns Overview” downloaded PDF file

[6] William Crawford and Jonathan Kaplan, “J2EE Design
Patterns”

[7] Zhiguo Guo, “J2EE Architecture and Patterns in
Enterprise Systems”, Master’s Thesis, 2004

[8] http:// www.dibsden.com (Online document)

